

What Drives Large Scale Battery Storage Value in California?

April 26, 2001 Energy Storage Association Chattanooga, TN

Overview

- Battery description
- Customer profile
- Value Drivers
- Value vs. Cost
- Payback vs. changes in assumptions
- Conclusions

Battery Description

- Innogy Technology Limited \$25 million sodium bromine battery
 - 12 MW output
 - \$2,083/kw
 - \$320/kw annual fixed capital cost*
 - 65% efficient
 - 10 hours storage with 14 hour charge time
- Battery can also operate at a higher peak capacity and lower efficiency which lowers the installed cost/kw

Customer Profile

- 12 MW battery storage service provided to PG&E commercial customers seeking lower energy and T&D rates assuming
 - 45% load factor
 - Customers pay commercial E-20 tariff for T&D
 - Customers face market based energy rates
 - Customers willing to pay a premium for increased reliability and power quality

Value Drivers

- 1) Peak-to-off peak energy price difference
 - Charge battery at a low off-peak price to avoid high onpeak price
 - Potential ancillary service value (not quantified)
- 2) T&D capacity charge reduction
 - Avoid high, peak monthly demand charges by purchasing electricity off-peak for use on-peak
- 3) Quality and reliability premium
 - Function of consumer willingness to pay a premium for greater reliability and power quality

Peak-to-Off peak energy price difference

Peak-to-off peak energy price difference

- Benefit based on:
 - Peak vs. off-peak energy price difference
 - 65% battery efficiency (e.g. 35% more power purchased off-peak than is used on peak)
- During the year ending November 2000, simulated net energy price "arbitrage" benefits were \$64/kw*
- This benefit will be cyclical depending on market tightness and degree of price cap regulation

T&D Capacity Charge Reduction

- Benefit depends on the difference between PG&E peak and off-peak commercial E-20 T&D rates
 - Peak rate: 5.70 cents/kwh (demand charge + volumetric)
 - Off-peak rate: about 1.0 cent/kwh
 - Assume 35% efficiency loss and 3% T&D loss
- In 2000, simulated T&D benefits were \$103/kw*
- This benefit has low risk given that T&D rates are not likely to change significantly

Quality & Reliability Premium

- Function of consumer willingness to pay
- Varies based on cost of outage
- Varies based on quality & reliability of grid based power
- Can increase to as high as \$10,000/hour

Quality & Reliability Premium

Source: E-Source, "Reliability in the Emerging Electricity Marketplace: The End-User Perspective." Results Workshop for Sponsors, Chicago, IL, February 4, 1999. Revised March 8, 1999. (Restricted availability.)

Quality & Reliability Premium

- Estimated annual premium: \$52/kw* assuming
 - Premium is paid for 10 on-peak hours
 - Consumer is willing to pay 25% premium relative to the average US commercial electricity price
- This benefit is customer specific and will vary depending on the reliability and quality of grid based power

Value vs. Cost

- (1) Assuming \$2,083/kw cost and 15.4% LCCF.
- (2) Assuming projected \$1,120/kw cost and 15.4% LCCF.

Payback vs. Changes In Assumptions

Conclusions

- Storage battery economics are driven by:
 - Peak to off-peak energy price differences which are cyclical
 - Peak to off-peak T&D rate differences which are likely to be stable
 - Consumer willingness to pay a quality premium
 - Varies by customer type as well as reliability and quality of grid based power
- At current cost, the battery is not economic but would breakeven at \$1,540/kw